SYLLABUS: Foundational Computational Biology (FCB) Courses I and II (MMG1344H; MMG1345H)

Spring 2025

FCB I: March 21st - April 25th

FCB II: May 2nd – June 6th

Course Description

The Foundational Computational Biology (FCB) courses, offered through the Molecular Genetics Graduate program, are taught as two 6-meeting topic courses that cover selected foundational concepts and current applications for computational biology and bioinformatics. The courses are targeted to 1st year graduate students, with preference given to students in the CBMG track of the Molecular Genetics Graduate Program.

Assignments will be both pen-and-paper and practical assignments requiring programming (e.g., Python) or statistical environments (e.g., R).

Enrollment is subject to Instructor approval, and will require:

- 1) evidence of comfort with computer programming and
- 2) excellence in two or more quantitative subjects, which may include: calculus, linear algebra, probability/statistics or other mathematics courses.
 - **❖** When:
 - FCB I will be from 2-4pm Fridays starting March 21st until April 25th except for Thursday April 17th 2-4pm
 - FCB II will be on Fridays 2-4pm starting May 2nd running until June 6th
 - TA office hours and location will be TBC
 - ❖ Where:
 - ➤ Lectures will be <u>in person</u> at the Donnelly Black Rm
 - ➤ Slack channel: https://foundationalc-kh01755.slack.com/
 - Current course content shared via DropBox:
 https://www.dropbox.com/scl/fo/xl0l7a4bs204xffvabnm5/ANIpCNZ3_WjOm6JFwubQuUk?rlkey=n6hxwkwlzout1hwez952iyjao&dl=0
 - Previous years course content shared: https://www.dropbox.com/scl/fo/v4z68c0w8yv04s2i6pd2m/h?dl=0&rlkey=xkmwg1uaw c2n83p1yu4srrgtk https://www.dropbox.com/sh/5dvd87kssquhd5o/AAB0WVxidP1y8LtO4-3r_dNpa?dl=0

- Assignments will be uploaded to: https://www.dropbox.com/scl/fo/obrsljxtr4sqayg8ezmqu/h?rlkey=bvgaoa8qcz4sc95otwy5ywzgb&dl=0
- Assignments will be submitted to DropBox file-request link: https://www.dropbox.com/request/iq5bLXbuROccPnfR7WGF
- Slides for lectures by Kieran Campbell will also be available here: https://www.camlab.ca/teaching/

Who:

- > Co-instructors
 - Juri Reimand (juri.reimand@utoronto.ca)
 - Kieran Campbell
 - Gary Bader
- ➤ Teaching Assistant:
 - TBA

The marking scheme will be 90% assignments, 10% participation.

The **lowest** participation mark will be dropped. (Please bring a doctor's note for anything else!)

Late assignments may be handed in up to one week late with a penalty of 5% per <u>business day</u> until the maximum penalty of 25% is reached.

FCB 1 Syllabus

DAY 1: 2 PM - 4 PM, Fri March 21st, 2024

Course overview - 10 minutes

Lecturers: Kieran Campbell, Gary Bader

Science intro (30 min) - Gary

The Practice of reproducible computational science (45 min) - Kieran

- ➤ Why work reproducibly?
- > Pseudorandom number generation and seeds
- > An introduction to Snakemake
- Data and code management (Gary)
- ➤ Learn how to use HPC via scinet courses https://education.scinet.utoronto.ca/

ASSIGNMENT #1.1 MADE AVAILABLE

DAY 2: 2 PM - 4 PM, Fri March 28th, 2024

70 min Intro, Probability/Statistics (Juri Reimand)

PDFs and PMFs, p-values, standard statistical tests

Sequence Analysis (Gary Bader)

Lecture: Substitution matrices, BLAST, Sequence similarity, Dynamic programming, Smith-Waterman sequence alignment

ASSIGNMENT #1.2 MADE AVAILABLE

DAY 3: 2 PM - 4 PM, Fri April 4th, 2024

2:05 - 2:55pm Lecturer: Zhaolei Zhang (to confirm)

- ➤ Lecture: Molecular evolution, Phylogenetics, Tree inference, paralogs, ancestral sequence inference
- ➤ Lecture: Conserved sequence elements, PHASTCONS, GERP, PHYLOP

3:05 - 3:55pm Lecturer: Artem Babaian (to confirm)

➤ Lecture: Finding distant homologs by structure/sequence similarity, sequence mining for pathogen discovery/understanding

ASSIGNMENT #1.1 DUE Friday at 11:59 pm

DAY 4: 2 PM - 4 PM, Fri Apr 11, 2024

Lecturer 1/2: Juri Reimand

Intro to unsupervised learning

Lecture: Clustering -- distance and similarity measures, linkage methods, K-means, hierarchical clustering, agglomerative vs divisive clustering

Lecturer 2/2: Kieran Campbell

Intro to supervised learning

- An overview of supervised learning
- ➤ Linear regression models

- Loss optimization via gradient descent
- > Classification with logistic regression
- ➤ More complex models
- ➤ Train/test splits
- ➤ Model complexity: overfitting and underfitting
- Penalized regression

ASSIGNMENT #1.3 made available

DAY 5: 2 PM - 4 PM, Thu Apr 17, 2024

2:10 - 3:00pm Lecturer 1/2: Jesse Gillis (to confirm)

➤ Lecture: Fundamentals of counting-based 'omic methods (e.g.RNA-Seq, ChIP-Seq, ATAC-Seq) and mining to gain biological insight

3:05 - 4:00pm Lecturer 2/2: Hannes Rost (to confirm)

Lecture: Protein mass spectrometry analysis

ASSIGNMENT #1.2 DUE Friday 11:59 pm

DAY 6: 2 - 4 PM, Fri Apr 25, 2024

Networks, Pathways and Function I

➤ Lecture: Gene ontologies, gene function analysis, pathway enrichment analysis, network visualization and analysis, interaction networks

2:10 - 3:00pm Lecturer: Gary Bader

Introduction to pathway enrichment analysis, pathway databases, Gene Ontology

3:05 - 4:00pm Lecturer: Juri Reimand

Pathway enrichment analysis statistics, Interpreting pathway enrichment analysis using Enrichment Map and Cytoscape

ASSIGNMENT #1.3 DUE Friday May 2nd at 11:59 pm

Thanks all!

[END FCB I]

FCB II

Before or during the course, here are some opportunities to brush up on essential background:

<u>Linear Algebra:</u>

Strang MIT course: https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/index.htm

3blue1brown:

https://www.youtube.com/watch?v=kjBOesZCoqc&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE ab

KhanAcademy: https://www.khanacademy.org/math/linear-algebra

KNOW: eigenvectors, singular value decomposition, Moore-Penrose pseudo-inverse

Gradients:

Khan Academy https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/gradient-and-directional-derivatives/v/gradient

DAY 1: 2 PM - 4 PM, Fri May 2nd, 2024

Lecturer: Kieran Campbell

- > Lecture: Bayesian inference
 - o Re-introduction to Bayes rule
 - O Sampling methods: Gibbs sampling, Metropolis Hastings
 - Variational inference
 - O An introduction to probabilistic programming languages & STAN
- > Lecture: Deep learning
 - The perceptron, multi-layer perceptrons
 - Gradient descent and backpropagation
 - O Deep learning for images: CNNs
 - O Deep learning for sequence data: RNNs

ASSIGNMENT #2.1 MADE AVAILABLE

DAY 2: 2 PM - 4 PM, Fri May 9th, 2024

Lecture 1/2: Gregory Schwartz — single-cell & spatial genomics

Lecturer 2/2: Sushant Kumar - variant interpretation in the context of protein structure

DAY 2.3: 2 PM - 4 PM, Friday May 16th, 2024

Lecturer: Kieran Campbell

Lecture: Unsupervised learning:

- ➤ Continuous latent variable models: historical perspective, principal component analysis, probabilistic PCA, non-negative matrix factorization, tSNE, autoencoders
- ➤ Mixture models: probabilistic clustering, Gaussian mixture models, expectation maximization, model complexity

ASSIGNMENT #2.2 MADE AVAILABLE

ASSIGNMENT #2.1 DUE Friday, May 16th at 11:59 pm

DAY 2.4: 2 PM - 4 PM, Fri May 23rd 2024

Lecturer 1/2: Michael Hoffman (to confirm)

— Lecture: Evaluating supervised learning

Lecturer 2/2: Philip Kim (to confirm)

— Generative models for protein design

DAY 2.5: 2 PM - 4 PM, Fri May 30th, 2024

Lecturer 1/2: Jared Simpson (to confirm)

 Lecture: Read mapping algorithms for short and long reads, long read single molecule sequencing technology

Lecturer 2/2: Philip Awadalla (to confirm)

- computational and population genetics, genomics, cancer, etc

ASSIGNMENT #2.2 DUE Friday, June 6th at 11:59 pm

DAY 2.6: 2 PM - 4 PM, Fri June 6th 2024

Lecturer 1/1 : Alan Moses (to confirm)

Lecture: Deep learning for sequence analysis

[END FCB II]